ASSESSMENT OF CORONARY PHYSIOLOGY:
Impact on Patient Management

Robert C. Hendel, MD, FACC, FAHA, MASNC

Sidney W. and Marilyn S. Lassen Professor of Cardiovascular Medicine
Chief, Section of Cardiology
Director, Tulane University Heart and Vascular Institute
Tulane University School of Medicine
New Orleans, Louisiana USA
CORONARY ANATOMY

- Angiography may result in both underestimation or overestimation of lesion severity.
- Angiographic disease correlates with prognosis, albeit weakly in many cases.
- Inconsistent literature regarding the impact of angiographically-guided on “hard” outcomes.
- Is coronary angiography alone the best procedure to decide therapy?
THE OCULO-DILATORY REFLEX?

ANATOMY IS NOT THE ANSWER!
PROGNOSTIC VALUE OF RADIONUCLIDE MYOCARDIAL PERFUSION IMAGING

Shaw L et al, 2012
JNC 1:1026

SPECT
n = 69,655

PET
n = 4,392

Normal/Mild Abn
Mod-Severe Abnormal
RISK OF CARDIAC DEATH AND INDUCIBLE ISCHEMIA

Role of Post-SPECT Therapy

Hachamovitch, Circulation 2003

10,627 pts

*p<0.001
SURVIVAL FREE OF DEATH FROM ANY CAUSE AND MYOCARDIAL INFARCTION

Number at Risk

<table>
<thead>
<tr>
<th>Medical Therapy</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1138</td>
<td>1017</td>
<td>959</td>
<td>834</td>
<td>638</td>
<td>408</td>
<td>192</td>
<td>30</td>
</tr>
<tr>
<td>PCI</td>
<td>1149</td>
<td>1013</td>
<td>952</td>
<td>833</td>
<td>637</td>
<td>417</td>
<td>200</td>
<td>35</td>
</tr>
</tbody>
</table>

Hazard ratio: 1.05
95% CI (0.87-1.27)
P = 0.62
COURAGE (SPECT MPI SUBSTUDY)
Cardiac Event-free Survival In Patients With Moderate-Severe Pre-Rx Ischemia Following PCI + OMT Or OMT (n=105)

Cumulative Event-Free Survival

Unadjusted p=0.001
Risk-Adjusted p=0.082

≥5% Reduction in Ischemic Myocardium (n=68)
No Significant Reduction in Ischemia (n=37)

Time to Follow-up (in Years)

Shaw Circulation 2008;117:1283-1291.
ANGIOGRAPHIC LESION SEVERITY VERSUS PHYSIOLOGY

Torino PA et al, 2010
JACC 55: 2816
ANATOMY ≠ PHYSIOLOGY
ATHEROSCLEROSIS ≠ ISCHEMIA

“Apples and Oranges”
Paul Cezanne
c. 1899
FLOW RESERVE

• FRACTIONAL FLOW RESERVE (FFR)
 – Similar to relative coronary flow reserve
 – Indirect index; uses several assumptions
 – Assessment of only epicardial stenosis

• ABSOLUTE FLOW RESERVE (CFR)
 – Impacted by factors impacting on maximal flow: stenosis severity, microcirculation, BP&HR
 – Reduced with hyperlipidemia, LVH
 – Related to stenosis dimensions, diffuse atherosclerosis and microvascular dysfunction

• RELATIVE FLOW RESERVE
 – Regional differences; value reduced with diffuse CAD
 – Insensitive to hemodynamics
 – Cornerstone of noninvasive testing
SIMPLIFIED RATIONALE OF FRACTIONAL FLOW RESERVE

\[
FFR = \frac{P_d - P_v}{P_a - P_v} = \frac{70}{100} = 0.7
\]

KEY: PHF, when resistance is minimal

Pijls, N. H. J. et al. 1995
Circulation; 92: 3183-3193
LESION-SPECIFIC ISCHEMIA: FRACTIONAL FLOW RESERVE (FFR)

Fractional Flow Reserve Vs. Angiography for Multivessel Evaluation (FAME) Trial

- FFR = Pressure Differences Across Stenosis
- Lesion-Specific Ischemia: \(\leq 0.80 \)

1,005 pts w/ multivessel CAD
1° Endpoint: Death, MI, repeat TVR

FFR vs. ANGIOGRAPHIC STRATEGY
The FAME, DEFER, and FAME2 Trials

Discordance between % stenosis and FFR results
→ >60% of moderate lesions (50-70%): insignificant

- Low event rates if no revascularization performed in absence of abnormal FFR
- PCI did not improve outcome if FFR normal
- Lower event rate when FFR strategy employed, in comparison with angiographic approach

Tonino et al, 2010 JACC 55: 2816
Pijls et al, 2007 JACC 49: 2105
Pijls et al, 2010 JACC 56: 177
De Bruyne et al, NEJM 2012; 367: 991
RELATIONSHIP BETWEEN FRACTIONAL FLOW RESERVE AND OUTCOME

Conceptual plot for FFR as continuous marker of risk

- **Highest**: Medically treated
- **Medium**: PCI decreases event rate most at low FFR
- **Low**: Revascularized
- **Optimal threshold**: PCI probably increases events at high FFR

Johnson NP et al
JACC 2014; 64: 1641
GUIDELINES FOR THE USE OF FFR

<table>
<thead>
<tr>
<th>Publication</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 ACCF/AHA/SCAI Guideline</td>
<td>Class IIa: angiographic intermediate coronary lesions (50-70%); For recommendations about revascularization</td>
</tr>
<tr>
<td>Expert consensus statement on FFR</td>
<td>In SIHD when noninvasive imaging is unavailable, nondiagnostic, or discordant, FFR should be used to assess functional significance of intermediate-severe coronary stenosis (50-90%)</td>
</tr>
<tr>
<td>2014 ESC/EACTS</td>
<td>Class I; FFR is indicated for moderate stenosis. Defer revascularization if FFR >0.80</td>
</tr>
<tr>
<td>2013 ACC Appropriate use criteria for SIHD</td>
<td>Advocate for expanded use of intracoronary physiological testing</td>
</tr>
<tr>
<td>2017 ACC Appropriate use criteria for PCI</td>
<td>If no stress test or results are indeterminant, FFR can be used to determine appropriateness of revascularization</td>
</tr>
</tbody>
</table>
U.S. TRENDS IN UTILIZATION OF FFR, FFR-GUIDED PCI, AND PCI FROM 2008 TO 2012

Naga V. et al., 2016
JACC;67:732-733
GLOBAL ADOPTION OF CORONARY PHYSIOLOGY TO GUIDE REVASCULARIZATION DECISION MAKING IN 2016

Reasons for low adoption
- Unavailable
- Time consuming
- Expensive
- Contraindications
- Adverse reactions

Gotberg M et al, 2017
JACC 70: 1379
WAVE-FREE PERIOD OF DIASTOLE AND ASSOCIATED HEMODYNAMICS

Gotberg M et al, 2017
JACC 70: 1379
INVASIVE TOOLS TO ASSESS PHYSIOLOGY
A Guide for Coronary Revascularization

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>iFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengthy procedure</td>
<td>Hyperemia independent</td>
<td>Excellent signal-to-noise ratio</td>
</tr>
<tr>
<td>Adenosine cost</td>
<td>Excellent signal-to-noise ratio</td>
<td>More rapid procedure</td>
</tr>
<tr>
<td>Availability of adenosine</td>
<td>More rapid procedure</td>
<td>Assess serial lesions</td>
</tr>
<tr>
<td>Inability to assess serial lesions</td>
<td>Assess serial lesions</td>
<td>Infrequent side effects</td>
</tr>
<tr>
<td>Frequent patient discomfort</td>
<td>Infrequent side effects</td>
<td></td>
</tr>
</tbody>
</table>
DEFERRAL OF REVASCULARIZATION ACCORDING TO iFR AND FFR

DEFINE FLAIR and iFR SWEDEHEART

- Single cutoff for iFR (0.98)
- Individual studies both revealed non-inferiority
- iFR avoid adenosine
 - Procedural time
 - Costs
 - Patient side effects
- Deferral of revascularization more common with iFR than with FFR
- iFR: The new standard?

Gotberg M et al, 2017
JACC 70: 1379
ASSESSMENT OF FFR FROM CT ANGIOGRAPHY
The DeFACTO Study (n=288)

Min JK et al, 2012
JAMA 308: 1237
INVASIVE CATHETERIZATION AND PRESENCE OF OBSTRUCTIVE DISEASE BASED ON STRATEGY
The PLATFORM Trial

Douglas PS et al
E Heart J 2015; 36: 3559

No MACE if ICA deferred based on FFR_{CT}
NON-INVASIVE TESTING COMPARED WITH FFR
A Meta-Analysis

<table>
<thead>
<tr>
<th>Test</th>
<th>Sens</th>
<th>Spec</th>
<th>NLR</th>
<th>AUC</th>
<th>Q-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECT</td>
<td>74%</td>
<td>79%</td>
<td>0.39</td>
<td>0.82</td>
<td>0.75</td>
</tr>
<tr>
<td>Echo</td>
<td>69%</td>
<td>84%</td>
<td>0.42</td>
<td>0.83</td>
<td>0.75</td>
</tr>
<tr>
<td>CMR</td>
<td>89%</td>
<td>87%</td>
<td>0.14</td>
<td>0.94</td>
<td>0.88</td>
</tr>
<tr>
<td>PET</td>
<td>84%</td>
<td>87%</td>
<td>0.14</td>
<td>0.93</td>
<td>0.87</td>
</tr>
<tr>
<td>CT</td>
<td>88%</td>
<td>80%</td>
<td>0.12</td>
<td>0.93</td>
<td>0.87</td>
</tr>
</tbody>
</table>

- CMR, CT and PET-r/o significant CAD and may serve as gatekeeper to cath lab
- CMR is test of choice
- BUT….Does FFR = functional testing?

Takx RAP et al, 2015
Circulation CV Img; 8: e002666
RELATIONSHIP BETWEEN CFR AND FFR

- CFR and FFR, even when discordance, reflect coronary physiology, not methodologic differences.

- Discordance explained by relative contribution of focal, diffuse, and small-vessel disease.
CONCLUSIONS

- Echocardiography, SPECT, PET, CCTA, CMR, and ICA have substantial prognostic value.
- COURAGE nuclear substudy and other image-guided trials support use on non-invasive testing to guide revascularization.
- FFR-directed PCI leads to improved outcomes based on FAME, DEFER and FAME 2 trials.
- iFR assessment may be preferable.
- Non-invasive evaluation of FFR appears.
- Determination of CFR provides assessment of more than just stenosis physiology, but ischemia at tissue level.
- Increasing evidence for PET-CFR to predict outcomes and plan strategy.
- FFR≠CFR, as different physiologic entities; use CFR to detect ischemia and FFR to determine candidacy for intervention?
- Guidelines support physiology-guided revascularization.